skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liang, Xin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Free, publicly-accessible full text available June 3, 2026
  3. Data compression is a powerful solution for addressing big data challenges in database and data management. In scientific data compression for vector fields, preserving topological information is essential for accurate analysis and visualization. The topological skeleton, a fundamental component of vector field topology, consists of critical points and their connectivity, known as separatrices. While previous work has focused on preserving critical points in error-controlled lossy compression, little attention has been given to preserving separatrices, which are equally important. In this work, we introduce TspSZ, an efficient error-bounded lossy compression framework designed to preserve both critical points and separatrices. Our key contributions are threefold: First, we propose TspSZ, a topological-skeleton-preserving lossy compression framework that integrates two algorithms. This allows existing critical-point-preserving compressors to also retain separatrices, significantly enhancing their ability to preserve topological structures. Second, we optimize TspSZ for efficiency through tailored improvements and parallelization. Specifically, we introduce a new error control mechanism to achieve high compression ratios and implement a shared-memory parallelization strategy to boost compression throughput. Third, we evaluate TspSZ against state-of-the-art lossy and lossless compressors using four real-world scientific datasets. Experimental results show that TspSZ achieves compression ratios of up to 7.7 times while effectively preserving the topological skeleton. This ensures efficient storage and transmission of scientific data without compromising topological integrity. 
    more » « less
    Free, publicly-accessible full text available May 19, 2026
  4. Free, publicly-accessible full text available May 19, 2026
  5. Free, publicly-accessible full text available June 3, 2026
  6. Free, publicly-accessible full text available June 3, 2026
  7. Free, publicly-accessible full text available May 1, 2026
  8. Free, publicly-accessible full text available June 3, 2026
  9. Free, publicly-accessible full text available May 1, 2026
  10. Free, publicly-accessible full text available June 3, 2026